\(\int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [237]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 181 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (52 A+63 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {4 a^2 (52 A+63 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/35*a^2*(8*A+7*B)*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+2/105*a^2*(52*A+63*B)*sin(d*x+c)/d/sec
(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+4/105*a^2*(52*A+63*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2
)+2/7*a*A*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(5/2)

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {4102, 4100, 3890, 3889} \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {4 a^2 (52 A+63 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{105 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 (52 A+63 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*a^2*(8*A + 7*B)*Sin[c + d*x])/(35*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (2*a^2*(52*A + 63*B)*Sin
[c + d*x])/(105*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (4*a^2*(52*A + 63*B)*Sqrt[Sec[c + d*x]]*Sin[c
 + d*x])/(105*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5
/2))

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2}{7} \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (8 A+7 B)+\frac {1}{2} a (4 A+7 B) \sec (c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (8 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{35} (a (52 A+63 B)) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (8 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (52 A+63 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{105} (2 a (52 A+63 B)) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a^2 (8 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (52 A+63 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {4 a^2 (52 A+63 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.51 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^2 \left (15 A+3 (13 A+7 B) \sec (c+d x)+(52 A+63 B) \sec ^2(c+d x)+2 (52 A+63 B) \sec ^3(c+d x)\right ) \sin (c+d x)}{105 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*a^2*(15*A + 3*(13*A + 7*B)*Sec[c + d*x] + (52*A + 63*B)*Sec[c + d*x]^2 + 2*(52*A + 63*B)*Sec[c + d*x]^3)*Si
n[c + d*x])/(105*d*Sec[c + d*x]^(5/2)*Sqrt[a*(1 + Sec[c + d*x])])

Maple [A] (verified)

Time = 5.14 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.56

method result size
default \(\frac {2 a \left (15 A \cos \left (d x +c \right )^{3}+39 A \cos \left (d x +c \right )^{2}+21 B \cos \left (d x +c \right )^{2}+52 A \cos \left (d x +c \right )+63 B \cos \left (d x +c \right )+104 A +126 B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(101\)
parts \(\frac {2 A a \left (15 \cos \left (d x +c \right )^{3}+39 \cos \left (d x +c \right )^{2}+52 \cos \left (d x +c \right )+104\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 B a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right )+3 \tan \left (d x +c \right )+6 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}\) \(141\)

[In]

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/105*a/d*(15*A*cos(d*x+c)^3+39*A*cos(d*x+c)^2+21*B*cos(d*x+c)^2+52*A*cos(d*x+c)+63*B*cos(d*x+c)+104*A+126*B)*
(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.62 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (15 \, A a \cos \left (d x + c\right )^{4} + 3 \, {\left (13 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{3} + {\left (52 \, A + 63 \, B\right )} a \cos \left (d x + c\right )^{2} + 2 \, {\left (52 \, A + 63 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/105*(15*A*a*cos(d*x + c)^4 + 3*(13*A + 7*B)*a*cos(d*x + c)^3 + (52*A + 63*B)*a*cos(d*x + c)^2 + 2*(52*A + 63
*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x +
c)))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (157) = 314\).

Time = 0.54 (sec) , antiderivative size = 514, normalized size of antiderivative = 2.84 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

1/840*(sqrt(2)*(735*a*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 175*
a*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 63*a*cos(2/7*arctan2(sin
(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 735*a*cos(7/2*d*x + 7/2*c)*sin(6/7*arctan2(si
n(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 175*a*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c),
cos(7/2*d*x + 7/2*c))) - 63*a*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))
) + 30*a*sin(7/2*d*x + 7/2*c) + 63*a*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 175*a*sin(
3/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 735*a*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2
*d*x + 7/2*c))))*A*sqrt(a) + 42*sqrt(2)*(20*a*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin
(5/2*d*x + 5/2*c) + 5*a*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 20
*a*cos(5/2*d*x + 5/2*c)*sin(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*a*cos(5/2*d*x + 5/2*c
)*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 2*a*sin(5/2*d*x + 5/2*c) + 5*a*sin(3/5*arctan
2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 20*a*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*
c))))*B*sqrt(a))/d

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 16.24 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.72 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (910\,A\,\sin \left (c+d\,x\right )+1050\,B\,\sin \left (c+d\,x\right )+238\,A\,\sin \left (2\,c+2\,d\,x\right )+78\,A\,\sin \left (3\,c+3\,d\,x\right )+15\,A\,\sin \left (4\,c+4\,d\,x\right )+252\,B\,\sin \left (2\,c+2\,d\,x\right )+42\,B\,\sin \left (3\,c+3\,d\,x\right )\right )}{420\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(7/2),x)

[Out]

(a*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x))^(1/2)*(910*A*sin(c + d*x) + 1050*
B*sin(c + d*x) + 238*A*sin(2*c + 2*d*x) + 78*A*sin(3*c + 3*d*x) + 15*A*sin(4*c + 4*d*x) + 252*B*sin(2*c + 2*d*
x) + 42*B*sin(3*c + 3*d*x)))/(420*d*(cos(c + d*x) + 1))